The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 0 X X^2+2 1 1 1 1 X 0 1 X X^2+2 1 1 1 X X X X X 2 X X^2 X 2 X X^2 X X X X 1 1 1 1 X^2 X^2 0 1 1 1 1 X^2 0 X^2 2 X^2 X^2+2 2 X 1 0 X X^2+2 X^2+X 0 X^2+X X^2+2 X+2 2 X^2+X+2 X^2 X+2 2 X^2+X+2 X^2 X 0 X^2+X X^2+2 X+2 0 X^2+X X^2+2 X+2 X^2+X X X+2 X 2 X^2+X+2 X^2 X X^2+X X 2 X+2 X X^2 X^2+X+2 X 0 X^2+2 2 X^2 X^2+X+2 X X X X^2+X+2 X X X 0 X^2+2 2 X^2 0 X^2+2 0 X^2+2 X^2+2 2 X^2 X^2+X X^2+X+2 X+2 X X^2+2 X^2 X^2 X^2 X^2 X X^2 X^2+X 0 0 0 2 2 2 0 0 2 2 2 0 0 0 0 2 2 0 0 2 2 2 2 0 0 0 2 2 0 2 2 0 0 2 0 0 0 2 2 0 2 2 2 2 2 2 2 0 0 0 0 2 2 0 0 0 0 0 2 2 0 2 2 2 0 2 0 2 0 0 2 2 0 0 0 0 0 generates a code of length 76 over Z4[X]/(X^3+2,2X) who´s minimum homogenous weight is 74. Homogenous weight enumerator: w(x)=1x^0+17x^74+72x^75+88x^76+40x^77+12x^78+12x^79+5x^80+3x^82+4x^83+2x^84 The gray image is a code over GF(2) with n=608, k=8 and d=296. This code was found by Heurico 1.16 in 0.421 seconds.